The granular chloride channel ClC-3 is permissive for insulin secretion.

نویسندگان

  • Ludmila V Deriy
  • Erwin A Gomez
  • David A Jacobson
  • XueQing Wang
  • Jessika A Hopson
  • Xiang Y Liu
  • Guangping Zhang
  • Vytautas P Bindokas
  • Louis H Philipson
  • Deborah J Nelson
چکیده

Insulin secretion from pancreatic beta cells is dependent on maturation and acidification of the secretory granule, processes necessary for prohormone convertase cleavage of proinsulin. Previous studies in isolated beta cells revealed that acidification may be dependent on the granule membrane chloride channel ClC-3, in a step permissive for a regulated secretory response. In this study, immuno-EM of beta cells revealed colocalization of ClC-3 and insulin on secretory granules. Clcn3(-/-) mice as well as isolated islets demonstrate impaired insulin secretion; Clcn3(-/-) beta cells are defective in regulated insulin exocytosis and granular acidification. Increased amounts of proinsulin were found in the majority of secretory granules in the Clcn3(-/-) mice, while in Clcn3(+/+) cells, proinsulin was confined to the immature secretory granules. These results demonstrate that in pancreatic beta cells, chloride channels, specifically ClC-3, are localized on insulin granules and play a role in insulin processing as well as insulin secretion through regulation of granular acidification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloride channels regulate HIT cell volume but cannot fully account for swelling-induced insulin secretion.

Insulin-secreting pancreatic islet beta-cells possess anion-permeable Cl- channels (I(Cl,islet)) that are swelling-activated, but the role of these channels in the cells is unclear. The Cl- channel blockers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and niflumic acid were evaluated for their ability to inhibit I(Cl,islet) in clonal beta-cells (HIT cells). Both drugs blocked the cha...

متن کامل

Chloride channels and tight junctions. Focus on "Expression of the chloride channel ClC-2 in the murine small intestine epithelium".

The chloride channel ClC-2 has been implicated in neonatal airway chloride secretion. To assess its role in secretion by the small intestine, we assessed its subcellular expression in ileal segments obtained from mice and studied the chloride transport properties of this tissue. Chloride secretion across the mucosa of murine ileal segments was assessed in Ussing chambers as negative short-circu...

متن کامل

Clcn2 encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands.

Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activ...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

ClC-2 and intestinal chloride secretion.

TO THE EDITOR: Beyder and Farrugia (1) state in their recently published review that lubiprostone is an opener of ClC-2 chloride channels and that through that action it can ameliorate constipation, implying that ClC-2 would mediate chloride and therefore fluid secretion. Support for this claim is provided through citation of a previous review (8). Nevertheless, both reviews overlook evidence c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell metabolism

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2009